The mission of this group is to bring together utility professionals in the power industry who are in the thick of the digital utility transformation. 

27,049 Members


Auto Conflation - Optimizing Utility’s Spatial Investments!

It is impossible to identify an industry that doesn’t have problems to overcome. The Utility industry is no different. Data improvement initiatives, grid modernization programs, services based implementations and risk management plans are just a few of the areas where operators have been spending funds. To compensate for these expenditures management is being challenged to reduce their overall spend while continuing to deliver a safe, reliable service. So, how does data conflation contribute to this?

GIS datasets underpins many programs a utility has, i.e. quality and accuracy of data which have long reaching impacts on many fronts; such as landbase modifications, replacements, network infrastructure realignment, and other utility commodity services comprises of increasing demand, generation, transmission, and distribution. Conflated GIS data empowers asset management and integrity programs. It energizes risk initiatives, and is the key to efficiency programs. Conflation improves spatial accuracy and data integrity of network assets by aligning them to a more precise and accurate real world system.

Conflation – Aligning Datasets to Improve Spatial Accuracy 

Thinking spatially, conflation or disambiguation is an approach that can be adopted whenever there is confusion in identities of two or more places, sharing similar characteristics of each other, until there seems to be only a single identity. The ultimate objective of conflation is to retain accurate data, minimize redundancy, and resolve data conflicts, by aligning geospatial datasets of different accuracy levels.

The conflation process involves a set of standard frameworks consisting of:

  1. Feature matching: Find a set of conjugate point pairs, termed as control point pairs, in two datasets,
  2. Match checking: Filter inaccurate control point pairs from the set of control point pairs for quality control, and
  3. Spatial attribute alignment: Use the accurate control points to align the rest of the geospatial objects (e.g., points or lines) in both datasets by using space partitioning techniques (e.g., triangulation) and geometric interpolation techniques. 

Conflation Automation

When one talks about conflation automation (referred here as shifting technology in geospatial context), it includes employing cutting-edge conflation techniques for compilation or reconciliation of geographic information from two different geospatial datasets covering overlapping regions.

Fundamentally, conflation techniques can be categorized into three groups based on the types of geospatial datasets dealt within GIS (Geographical Information System) domain.

1. Vector to Vector: A typical example is the conflation of street centerline with respect to satellite / aerial images. Figure 1 shows another scenario of utility assets conflation; where conflation of ‘overhead (OH) and underground (UG) electric utility networks’ is achieved.

Figure 1: Managing multi-directional shifts using auto conflated scripted framework

2. Vector to Raster: Figure 2 shows practical example of adjusted gas network as a result of conflation in street intersections of a facility (Gas) network from asset data and landbase image.

3. Raster to Raster: Involves warping maps pixels within each triangle to the corresponding pixels on imagery based on Delaunary triangles and rubber-sheeting techniques, as described by Ching-Chien Chen – 2005.

Advances in Automated Conflation Technology

First Saalfeld, in 1988 laid the foundation of conflation automation (vector to vector), by investigating the techniques to automatically construct the influence regions around the control points, to reposition other features into alignment by appropriate local interpolation techniques. From then, various vector to vector conflation techniques have been proposed by Ware and Jones in 1998. Walter and Fritsch in 1999 and many GIS systems such as [Conflex (] and [MapMerger (] have been developed to achieve the alignments of geospatial datasets.

Figure 2: Adjusted Gas Facility Network

To help utilities conflate their GIS data, RMSI developed ConflateX™ a feedback driven solution envisioned to address the key business challenges such as minimal downtime, and business as usual. It has in-built validation and reporting tools and ensure zero geometry, attribute and connectivity losses to data. Figure 3 represents a synopsis of the result achieved during an automated street centerline conflation test by utilizing different algorithms. Interested to learn more about ConflateX™? Visit contact us at

Figure 3: Street Centerline Conflation Results using different algorithms of ConflateX

Recently, Serguei Sokolov – 2017 filled a US patent for ‘’method and system for conflating raster and vector data’’ to preserve accurate relative location information between vector and raster data sources during non-linear transformation. In a method according to this invention, raster and vector data are received that corresponds to maps and conflated in a multi-step process (

Considering the above scenario, progressive utilities as part of their digital transformation journey, are taking up ambitious projects such as grid modernization programs, software infrastructure projects, where advanced automated conflation tools are playing a vital role by providing large volumes of spatially accurate GIS datasets.


Main Image - Courtsey of -

Rahul Krishna Pandey's picture

Thank Rahul Krishna for the Post!

Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.


No discussions yet. Start a discussion below.

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »