The Energy Collective Group

This group brings together the best thinkers on energy and climate. Join us for smart, insightful posts and conversations about where the energy industry is and where it is going.

10,030 Members

Post

The End of Coal: Good Riddance or Dangerous Gamble?

then-Energy Secretary Chris Huhne visits Longannet in 2010 (photo DECC)

Then-Energy Secretary Chris Huhne visits Longannet in 2010 (photo DECC)

Scotland has become the first part of the UK to stop burning coal to supply electricity following the closure of Longannet, its largest power station, on March 24. According to Paul Younger, Professor of Energy Engineering at University of Glasgow, the closure of coal-fired power plants in the UK may lead to serious problems with voltage control. Prepare for power interruptions and flickering lights.

The closure of Longannet is a sign of the times, with the rest of the UK’s coal-fired power stations on death row after energy secretary Amber Rudd announced late last year that they will all be forced to close by 2025.

For many reasons, it is hard to mourn the demise of coal-fired power. Around 12,000 miners are killed around the world each year, most of them digging for coal; abandoned mines cause widespread water pollution; and coal-fired plants pollute the air with the likes of nitrogen and sulphur compounds, as well as the highest greenhouse-gas emissions of any major source of energy generation. In the absence of carbon capture and storage, a technology which would be ready more quickly if the government backed it properly, plant closure may therefore seem sensible – even while we should help those that lose their jobs and regret the loss of skills from the workforce.

If we are going to manage without Longannet and all the other gas-fired and coal-fired power stations, we would need at least 970 GWh of storage – more than a hundred pumped hydropower stations of comparable size to those we already have

That would be all there was to say were it not for a few harsh realities of electricity supply. There are two reasons why coal-fired power plants have survived so long. Coal is cheap; only since the US shale-gas boom has it been consistently beaten on price. And coal-fired plants are particularly suited to providing power on demand at short notice, as well as providing crucial stabilisation services for frequency and voltage across the grid.

Power on demand

If we are unable to dispatch electricity on demand, we must expect blackouts. To do away with coal-fired power before alternatives are available is bold, to say the least. Gas-fired plants can play the same role, of course, but we have not been building them in the UK in recent decades. And the economics for doing so have been made very difficult by the capacity-auctions system that helps to fund them, which has also seen many existing plants mothballed. As for nuclear power, it is low-carbon but provides electricity at a constant rate and therefore can’t be increased to track demand. Besides, the ongoing fiasco over Hinkley C – and by extension nuclear new-build in general – hardly makes it look a great contributor to energy security in the foreseeable future.

We may be heading into dangerous territory. The UK needs to get a strategy together for building new gas-fired or coal-fired power, fitted with carbon capture and storage technology, before the situation deteriorates any further

Among the renewable sources, the only one that offers equivalent dispatchable power is biomass combustion – burning mainly wood – but it also entails air-quality challenges and its sustainability is debatable. Hydropower is seasonally limited, while wind and solar are incapable of dispatchable output. The consequences are not just for the future, either – to compensate for the reduced coal-fired and gas-fired power, National Grid has been quietly allowing energy companies to set up “diesel farms” of temporary generators in England to provide extra power in peak, even though it’s more damaging than coal.

But can’t we just store renewable energy, whenever it is generated, and dispatch it at times of high demand? Let’s be clear: we have the technology – it’s the affordability and scale that are challenging. Of the myriad potential storage technologies, none are as yet close to being able to store electricity at comparable scale and cost to our only grid-level storage technology: pumped-storage hydropower.

But pumped storage can only do so much. Let’s assume the UK could muster sufficient wind power to meet one third of our typical daily electricity consumption (40 GW to 45 GW). In the absence of dispatchable power on demand, to offset the kind of three-day calm period that is common during spells of high pressure in winter, we would need to be able to store around 1,000 gigawatt hours (GWh) of power. Yet pumped storage hydropower in the UK only totals 30 GWh, from four stations.

If we are going to manage without Longannet and all the other gas-fired and coal-fired power stations, we would need at least 970 GWh of storage – more than a hundred pumped hydropower stations of comparable size to those we already have. This would be unlikely to cost less than £100 billion. And do we even have 100 plus upland catchments we’d be happy to impound and manage for this purpose? Even if most of the UK uplands were not (rightly) zealously protected conservation areas, it seems implausible that the UK could find sufficient sites.

So as we close plants such as Longannet, we can expect serious problems with voltage control. This bodes ill for the electrical appliances and devices on which we all increasingly rely.

Add the important caveat that you lose energy sending it back and forth to a storage facility, between 10% and 35% depending on the technology. This means that relying on renewables and increased storage means you would need substantially more total generating capacity than at present.

The voltage issue

So far we have only talked about power quantity, whereas power quality is also crucial. To keep voltage within prescribed bounds requires “reactive” (or “wattless”) power. Coal-fired power-stations have long been the mainstay of this activity – not least in Scotland. It has to be done regionally, so you can’t make up for this with coal power from elsewhere. Wind turbines cannot provide reactive power control, and neither can nuclear. Gas-fired power is again the only alternative.

So as we close plants such as Longannet, we can expect serious problems with voltage control. This bodes ill for the electrical appliances and devices on which we all increasingly rely. With the closure of Longannet, Scotland thus becomes the first area of the UK to take a serious gamble with reactive power. It will take not just good management but a serious amount of good luck for the fossil-fuel funeral wake not to be spoiled by flickering or failure of the lights.

In short, we may be heading into dangerous territory. The UK needs to get a strategy together for building new gas-fired or coal-fired power, fitted with carbon capture and storage technology, before the situation deteriorates any further.

by

Editor’s Note

Paul Younger is Professor of Energy Engineering at the University of Glasgow. This article was first published on The Conversation and is republished here with permission.

Energy Post's picture

Thank Energy for the Post!

Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.

Discussions

Hops Gegangen's picture
Hops Gegangen on April 5, 2016

“Wind turbines cannot provide reactive power control, and neither can nuclear. Gas-fired power is again the only alternative.”

As I so often say in the comments section, “as of these times.”

I was listening to a Climate One podcast on new nuclear, and startups like NuScale are all over the load-following technology. We just might see nuclear back up renewable energy, and let renewable lower the net waste generation

Nathan Wilson's picture
Nathan Wilson on April 5, 2016

With less than 3% of the UK’s electricity coming from hydro, they will certainly need to add a lot of energy storage in order to deeply decarbonize their electricity supply, which already has >10% from variable renewables (without a miracle in CC&S economics and public acceptance).

A good alternative to pumped-hydro is thermal energy storage coupled with high temperature nuclear plants. Several of the Gen IV nuclear concepts operate in a convenient temperature range (e.g. the sodium cooled fast reactor and the helium cooled pebble-bed reactor, both of which have been demonstrated with grid-connected pilot plants; as well as the molten-salt cooled and molten-salt fueled reactors, which are under development in China).

Thermal storage is similar in cost to pumped-hydro (i.e. much cheaper than batteries), but has the added advantage that fossil fuel (or hydrogen) backup can easily be added (which is the cheapest way to handle long outages in variable renewables).

Engineer- Poet's picture
Engineer- Poet on April 6, 2016

There is no reason to throttle nuclear power down to accomodate unreliable power.  If that happens, it means (a) that the unreliables are overbuilt, and (b) the dispatch order allows costs that should be disallowed.  The savings from turning down a nuclear plant are between minuscule and zero, and that is how all power from unreliables that would force such changes in dispatch should be compensated—at zero, if not less.

Engineer- Poet's picture
Engineer- Poet on April 6, 2016

Wind turbines cannot provide reactive power control, and neither can nuclear.

Says who?  Unless a nuclear plant’s alternator is at its limit of producing volt-amperes, increasing the excitation will produce reactive power without altering the real power output.  It’s the same as every other synchronous alternator.

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »