The Wide Area View: Synchrophasors
An Intelligent Utility Reality Webcast

July 8, 2010
The Wide Area View: Synchrophasors

Phil Carson
Editor-in-Chief
Intelligent Utility Daily

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
The Wide Area View: Synchrophasors

Tony Johnson
Consulting Engineer
Southern California Edison

Jeff Younger
Assistant Manager of Electronic Systems
Salt River Project (SRP)

Chantal Hendrzak
Project Manager and Applied Research Director
PJM Interconnection

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Agenda

Introduction
• Our definition of an intelligent utility
• As the grid becomes two-way, so does the conversation

The discussion
• Tony Johnson, Southern California Edison, explains synchrophasor technology and how it applies to SCE
• Jeff Younger, Salt River Project, discusses situational awareness and wide area measurement and control
• Chantal Hendrzak, PJM Interconnection, talks about how this applies to a multi-utility project

Q&A

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Introduction: An intelligent utility operation

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
SCE’s Wide Area Situational Awareness System

Anthony Johnson
Anthony.johnson@sce.com
Outline

• What is a SynchroPhasor
• WASAS Design Considerations / Requirements
• WASAS System Design Overview
What is a SyncroPhasor?
Keys to the success of SyncroPhasors

• Accurate time stamp
• Voltage, Current, and Frequency
• Magnitude and angle
• 30 Samples per second
• From points all over the grid
Outline

• What is a SyncroPhasor
• WASAS Design Considerations / Requirements
• WASAS System Design Overview

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
WASAS Design Considerations / Requirements

• Not a synchrophasor data only system – a wide-area situation awareness system primarily for use by control center operators
 – EMS/SCADA data
 – Non-electrical data (weather, fire, traffic, earthquake, etc.)
 – More will be added in the future!!!

• Not a standalone system – must interface with variety of external systems
 – Other SCE systems, such as EMS/SCADA, engineering database, etc.
 – External data servers for weather, fire, traffic, earthquake data
 – Synchrophasor data from phasor systems of other utilities (e.g. WECC member utilities)
 – May interface with more SCE internal and external systems in the future

Join the conversation on Twitter using #IUWebcasts
and follow Intelligent Utility on Twitter @IntelUtil
WASAS Design Considerations / Requirements (cont.)

• Will need to evolve to become a wide-area monitoring, protection and control system (WAMPACS) over time
 – Must be able to support all types of wide-area monitoring, protection and control applications

• System expansion anticipated
 – More phasor measurements from SCE and others
 – Other data (e.g. IED data)

• Will be part of SCE’s overall Smart Grid deployment
 – Leverage SCE existing IT infrastructure and common services
WASAS Design Considerations / Requirements (cont.)

• Current WASAS deployment complete by end of 2011 as an approved GRC project including all procurement, engineering, deployment, installation, and testing processes
SCE’s vision about WASAS

- Separate presentation, application, and data interface parts with interfaces between
 - Presentation and application
 - Application and data input adapter
- Work with NASPI to make interfaces to become open standards

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Outline

• What is a SyncroPhasor
• WASAS Design Considerations / Requirements
• WASAS System Design Overview
WASAS as part of SCE Smart Grid Vision
SCEnet2 Conceptual Architecture

WASAS System Design Views – Network/Comm

<table>
<thead>
<tr>
<th>Core</th>
<th>Aggregation</th>
<th>Access</th>
<th>Premises</th>
</tr>
</thead>
</table>

© Copyright 2009, Southern California Edison
WASAS System Design Views – Data Flow
MPLS Resource Sharing (backbone)

Sub-networks:
- Admin VPN
- Grid VPN
- CRAS VPN
- DBS VPN
- PMU VPN
- Other VPN

Logical VPN Networks
WASAS System Design Views – Security
Four environments: Operation (OP), Production Test (PT), Development (DEV), and Training (TR)
- Full redundancy for OP and PT
- PT is exactly the same as OP

External access of WASAS data is through WASAS external historian databases
- Data are pushed from OP environment to external historian – no direct access from external
Additional information
SCE’s Wide Area Situational Awareness System

Anthony Johnson
anthony.johnson@sce.com
Office: 626-308-6936
Cell: 661-803-4499
www.sce.com/smartgrid

Join the conversation on Twitter using #IUWebcasts
and follow Intelligent Utility on Twitter @IntelUtil
SRP
Synchrophasor Activities

Jeff Younger
SRP Electronic Systems
Salt River Project (SRP)

- 3rd largest public power utility
 - ~940,000 electric customers
 - 2,900 sq miles of service territory
 - 90% Residential + 10% C&I
Why Synchrophasors

- Instantaneous view of the state of the electric system
- Once you have the data, there are a variety of applications:
 - Enhanced state estimation
 - Operator visualization
 - Black Start visibility
 - Line impedance derivation
 - Post-disturbance analysis
 - Island phase angle studies
 - Power network model validation
 - Oscillatory mode detection & damping

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Synchrophasor Data Flow – Concerns

- IRIG-B failure
- Communication channel failure
- PDC Software lockup
- Inter-vendor operability issues
- Different C37.118 interpretations
- Inter-utility data-sharing issues
- Data archiving concerns
- Security
Industry Trends

- IEEE C37.118 now widely available
 - Common platform, minimum performance standard
- Ethernet availability
 - Increased bandwidth for wide area control applications
- Software advances
 - Improved operator displays, on-line/real-time analysis
- Government & University R&D
 - Optimal placement of PMUs
 - State Estimation enhancement
- More DFR & relay-embedded PMUs
 - Hathaway, GE, SEL, ABB
Industry challenges

• Inter-operability
 o Can brand G **really** talk to brand S? Reliably?

• Security
 o Data sharing among utilities can be difficult
 o More hooks into substation, relays

• Operator acceptance
 o Must turn **data** into **information**
 o Efficient visualization is key

• Cohesion among utilities
 o Need for a common forum & standards

• Catch-22 application cycle
 o Developer needs installed PMU base
 o Installing PMUs requires a business need
Western Interconnection Synchrophasor Program (WISP)
WISP High-Level Scope

1. Synchrophasor Infrastructure
 - Deployment of 250+ plus PMUs and phasor data concentrators (PDC) throughout the Western Interconnection, data and wide-area network communication infrastructure, IT infrastructure, and the NASPI integration infrastructure

2. Synchrophasor Applications and Tools
 - Real-Time Applications
 - Situational awareness for operators
 - Wide-area controls for automatic safety nets
 - Offline Applications and Tools
 - Power system performance and disturbance evaluation
 - System-wide model validation

3. RC Reliability Improvement Processes
SRP Synchrophasor Team

• An ongoing, multi-departmental effort
 o Computer Applications – EMS, SE
 o Communications Engineering – network
 o Communications C&M – field installation
 o Transmission Planning – model validation & disturbance analysis
 o System Protection – PMU design, settings
 o System Operations – visualization
 o Control Engineering – EMS, SE integration
 o Relay Shop – field installation, maintenance
Team Milestones

- Used real-time PMU data during Black Start exercise
- Installed permanent PMUs for Black Start path
- Installed permanent, redundant PDC network
- Initiated EIPP/NASPI & WISP involvement
- Evaluated GE N60 & L90 & Hathaway DFR PMU capabilities
- Published papers at WPRC, Texas A&M, NAPS, ETEP
- Funding research with Arizona State University
 - Optimal placement of PMUs
 - State estimator enhancement
 - Line impedance verification
 - Tools for operator situational awareness
 - Generator dynamic parameter validation

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
SRP Future Efforts

• Hardware
 o 230kV & 500kV expansion plan is underway
 o Evaluating Arbiter 1133A PMU device
 o Hathaway DFR upgrades

• Software
 o State Estimator & EMS integration
 o Evaluating visualization packages (RTDMS)

• Industry Involvement
 o Increased WECC WISP & JSIS involvement
SRP Synchrophasor Contact

For Additional Information:

Steve Sturgill
Steve.Sturgill@srpnet.com
602-236-4387
PJM SynchroPhasor Technology Deployment

Chantal Hendrzak
General Manager – Applied Solutions
PJM Interconnection
PMU Installations in the U.S.

Source: NASPI, April 2010
Pre-Grant SynchroPhasor Deployment

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Production Quality System to Support 80+ Monitored Substations
Voltage Stability Monitoring

Determination of Accurate Operating Limits

Model Derivation & Validation

Inter-area Oscillation Detection & Analysis

Disturbance Analysis

Angle & Frequency Monitoring

Wide-area monitoring

Improve State Estimation

System Restoration

Real-time Control of wide-area network

Detection of imminent Cascading

Real-time control of corridors

Deployment Challenge

1-2 years

2-5 years

>5 years ?

Needs moderate development

Requires more research

Ready to deploy

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @InteUtil
When Visibility is Lacking

August 14, 2003 Blackout

Phase Angles Diverged Prior To Blackout

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
SynchroPhasor Applications

- Real-time Control of wide-area network
- Detection of imminent Cascading
- Voltage Stability Monitoring
- Improve State Estimation
- System Restoration
- Real-time control of corridors
- Model Derivation & Validation
- Determination of Accurate Operating Limits
- Inter-area Oscillation Detection & Analysis
- Disturbance Analysis
- Angle & Frequency Monitoring
- Wide-area monitoring

Deployment Challenge:
- Requires more research
- Needs moderate development
- Ready to deploy

1-2 years
2-5 years
>5 years?

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Actual System Performance
- unstable system behavior observed.

Model Simulation
- predicted stable system performance.
PJM SynchroPhasor Deployment: System Overview

Event & Alarm Processor → Data Processing → Phasor Data Archive → Displays

EM/SCADA

Super PDC

PJM Displays → TO

PDC → PMU

Data Processing*

Other Monitoring Entities (FERC/NERC, etc.)

* TOs can optionally receive phasor data from PJM
SynchroPhasor Redundant Network

TO Sites

Vendor 1
MPLS Network
(Traffic encrypted from router to router)

Vendor 2
MPLS Network
(Traffic encrypted from router to router)

Future NASPINet Connection*

*Routers will be capable of connecting to NASPINet

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Metrics / Benefits

Economic
- Reduced Congestion Costs
- Infrastructure Investment
- Construction & Electric Infrastructure Assets (80+ PMUs / 17 PDCs)
- Job Creation

Reliability
- Situational Awareness - Visualization & Alerting/Alarming
- Event Capture & Tracking
- Model Validation & Improvements
- Post-Distribution Event Analysis
- Transmission Assets Monitored & MW Flows

1-3 years
- Reduced Congestion Costs
- Optimized Operations

3-5 years
- Reduced Wide Area Outages and Faster Restoration
- Improved Voltage Stability Tools
- Inter-Area Oscillation Tools
- Lower equipment failures

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
For Additional Information on PJM’s SynchroPhasor Deployment

Chantal Hendrzak
hendrc@pjm.com
Office: 610-666-4635
www.pjm.com
Q&A

To submit a question . . .
Use the interface question box
to the right of your screen.

The magazine for building a smart grid and delivering information-enabled energy. FREE subscriptions available at www.intelligentutility.com/SUBSCRIBE

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Q&A

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Go to where the power industry gathers for news, information, and analysis, visit www.energycentral.com

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @InteUtil
Q&A

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Leading website and newsletter covering the business of renewable and sustainable energy.
Go to www.RenewablesBiz.com

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Q&A

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Get the inside scoop with Energy Central Professional News Service. Start your FREE trial at http://pro.energycentral.com/professional

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Q&A

Join the discussion, raise your question, and voice your opinion at www.energyblogs.com

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Join our community of innovators who are transforming smart grid vision into reality. Go to www.IntelligentUtility.com

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510
Q&A

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Energy Pulse

Be a thought leader in the power industry with insight, analysis and commentary.
Go to www.energypulse.net

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Q&A

Connecting job seekers and employers in the power industry. Go to www.EnergyCentralJobs.com

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Q&A

Leading website and newsletter covering the business of renewable and sustainable energy.
Go to www.RenewablesBiz.com

Energy Central
Contact Information:
webcastquestions@energycentral.com
303.782.5510

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Closing Remarks

Phil Carson
Editor-in-Chief
Intelligent Utility Daily

November 8-10, 2010 – Scottsdale, AZ

INFORMATION TECHNOLOGY – CUSTOMER SERVICE – OPERATIONS

If you are a senior executive at a utility/ISO/RTO and have ultimate responsibility for enterprise-level decisions, you should not miss this one-of-a-kind summit.

Go to www.knowledgesummits.com

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil
Upcoming Webcasts

• August 5 – Transmission Brain and Brawn
• September 9 – Smart Meters
• October 7 – Preparing Personnel

www.energycentral.com/events/audio

Join the conversation on Twitter using #IUWebcasts and follow Intelligent Utility on Twitter @IntelUtil