Nuclear Vision's at the Idaho National Lab

April 7, 2008

By Richard Korman

The people planning the future of nuclear energy measure time in decades and time is already running short for Philip C. Hildebrandt.

As director of the Next Generation Nuclear Project for the Idaho National Laboratory in eastern Idaho, Hildebrandt's job is to build a big prototype nuclear reactor that is safe enough to site near gas and chemical plants all across North America's industrial backyard. And he's only got until Sept. 30, 2021.

Although Congress in 2005 authorized the U.S. Department of Energy, which is funding the work at the lab, to spend $1.25 billion on the prototype over the next eight years, the allocations by the department had languished at around $30 million each year. Hildebrandt's team said it hoped to get three times as much, and the National Academy of Sciences, in a report released in October, expressed concern that among the several federally funded nuclear development programs, NextGen was underfinanced and couldn't finish on time.

In December, Congress handed NextGen $100 million. The infusion "isn't enough to put us back on track for the end dates," Hildebrandt cautions, but "Congress came through to help. It's substantial and very important. We're better than we thought we were, but we're still behind."

An electrical engineer and consultant with deep experience in nuclear power and chemical waste, Hildebrandt shares a vision with atomic engineers in Japan and South Africa of nuclear energy as an industrial heat source. If NextGen is successful, between 15 and 20 years from now North Americans will build dozens - maybe hundreds - of comparatively small, high-temperature gas-cooled reactors to breathe heat into refineries and chemical plants, especially plants to make hydrogen. Right now on-site industrial heating plants are fueled with gas, coal or oil and most nuclear power today is generated from big light-water reactors to meet base-load electrical demand.

At the core of this plan are heat and hope. Light-water reactors that operate today drive turbines by attaining temperatures of 300 degrees C or so but high-temperature, gas-cooled reactors can reach 900 degrees C or higher. That means such reactors can provide more than enough heat to refine crude oil or to separate bitumen from shale or sand in the Western United States and Canada - all of which helps extend domestic energy supplies.

Even more hope is needed when you consider the project's main industrial goal, hydrogen production, which requires temperatures of 800 degrees C.

If all this is to happen in a by 2021, engineers and scientists must perfect heat-resistant materials and other aspects of the design while private companies must risk billions beyond the federal tax dollars on the $3 billion to $4 billion project.

Fast Pace

Nuclear engineers first operated test-and-demonstration high-temperature, gas-cooled reactors in the United States and Europe from the 1960s to the 1980s with mixed results. East Germans operated a small, 30- to 40-megawatt test reactor successfully for 21 years, according to a report by France's Nuclear Energy Agency. But an American high-temperature, gas-cooled power plant near Denver ultimately failed in the 1980s.

Two years after the Colorado project was shut down, Japanese nuclear engineers started construction on a promising sequel, a high-temperature test reactor at the Oarai Research Establishment. That small reactor successfully reached 950 degrees C and the researchers are now designing a hydrogen production system to hook to the reactor, according to a report by the Japan Atomic Energy Agency.

To develop a U.S. demonstration prototype, the Idaho National Laboratory is counting on "leveraging" that high temperature, gas-cooled reactor and another one being developed in South Africa, where the Pebble Bed Modula Reactor design is being used.

No matter which design is adapted, Hildebrandt and his colleagues must put together an industry alliance that pairs two largely separate branches of business, nuclear energy and petrochemicals, to shoulder the majority of the development and construction costs. As is done with conventional gas-fired industrial turbines, the manufacturer and energy company would co-develop the new plant in a business deal that would span decades with the reactors and heat sources dedicated to a specific purpose.

As with everything nuclear, there are fundamental disagreements. Hildebrandt admits there will be a challenge in gaining acceptance for the idea of nuclear reactors co-located with industrial plants across the country, although he says that it can be done. Meantime, there's the issue of regulation. The Nuclear Regulatory Commission "today is an agency primarily in the business of licensing light-water reactors; as we go to alternative concepts, like high temperature, the regulatory process will have to change."

The ghosts of prior failed efforts in public-private nuclear development are also at play. The Clinch River Breeder Reactor Project in Tennessee, for instance, tried to produce electricity with liquid metal fast breeder reactors and sodium cooling systems. It costs more than $1 billion in public money when Congress stopped it in 1983.

"A number of things changed and both government and industry decided the time wasn't right," says Harold McFarlane, Idaho lab associate director of nuclear science

His main concern with NextGen is to "make sure we're designing the right reactor for the first applicant" to license as a private project beyond the prototype.

Meanwhile, the work goes on. In late 2006, the Idaho lab announced that it had subcontracted engineering studies and pre-conceptual design activities to three design teams led by Westinghouse Electric, AREVA and General Atomics. More contracts for studies and conceptual design work must be issued in fiscal 2008. And the race is on to get an advanced nuclear reactor up and running by 2021.

More information is available from Energy Central:

Subscribe to EnergyBiz magazine today.
EnergyBiz magazine is the thought-leading, award-winning publication of the emerging power industry. This article originally appeared in the March/April 2008 issue.

EnergyBiz Insider

Want to stay atop the energy sector?

Ken Silverstein
EnergyBiz Insider

Read EnergyBiz Insider, a thrice-weekly e-publication that takes an incisive look at the issues that affect your job and your company.

Each issue examines one relevant topic and gives you keen and in-depth insight.

Topics covered in Insider range from financial to technological to regulatory, with an eye toward providing fair and balanced coverage.

Sign Up For EnergyBiz Insider

EnergyBiz Magazine is Online


Save Energy, Save Money: Energy Analytics Goes Mobile

Thursday Oct 15, 2015 - 12:00 PM Eastern - Virtual Event

In its quest to continually maintain its high customer service, ensure customer retention and lead the market, Greenchoice Utility, the largest green and renewable sources energy provider in the Netherlands, partnered with ONZO Ltd., to develop a new mobile customer more...

Avoiding the 'Frankenstein' Approach to Utility Mobile Workforce Management

Tuesday Oct 20, 2015 - 12:00 PM Eastern - Virtual Event

The demands on the Utility workforce are continually expanding. So too are the demands on the software technology that supports these mission-critical processes. Many utilities deploy workforce management technology one point solution at a time as their needs grow. These more...

Beyond the Smart Meter: Building a better data architecture to monetize your data and realize your benefits

Wednesday Oct 21, 2015 - 4:00 PM Eastern - Virtual Event

Bit Stew Presents Webinar & Case Study featuring AusNet Services. As utilities roll out smart meter programs, they are quickly becoming overwhelmed with the massive volumes of data generated by the modern grid. more...

Strategizing the Role of Bring Your Own Device in Your Demand Management Program

Thursday Oct 22, 2015 - 12:00 PM Eastern - Virtual Event

Demand response and energy efficiency programs that utilize a bring your own device (BYOD) approach to include energy devices already in consumers homes benefit utilities, consumers and connected device providers alike. Utilities can expand demand response capacity with lower marketing more...

Taking Control of your Data: Advantages of Cloud Based Security and Data Optimization

Thursday Oct 29, 2015 - 3:00 PM Eastern - Virtual Event

Utilities recognize the need to securely manage data for optimal program effectiveness. Yet managing data internally can be risky and cost prohibitive. more...

15th Annual Outage Response & Restoration Management

Wednesday Oct 21, 2015 - Friday Oct 23, 2015 - Atlanta, GA


Utility Analytics Week 2015

Wednesday Oct 28, 2015 - Friday Oct 30, 2015 - New Orleans, Louisianna

As analytics progress in the utility industry, so do the needs for greater return on investment while gaining maximum strategic advantage and value. Utility Analytics Week will help you ignite your program and tackle the most challenging analytic hurdles. more...

Knowledge Executive Summit

Monday Nov 2, 2015 - Wednesday Nov 4, 2015 - Miami, Florida

Accelerating Knowledge Transfer Among Utility Leaders. Today's utility leaders have to contend with intense schedules and receive a host of invitations to meetings and trade events that do not deliver tangible benefits. Through Knowledge Executive Summit, utility leaders can participate more...

16th PLMA Fall Conference

Tuesday Nov 3, 2015 - Wednesday Nov 4, 2015 - Charlotte, NC - USA

Gain real-world insight from market practitioners, technology firms, and energy utilities active in the demand response marketplace. About 150 demand response industry professionals are expected to attend from energy utilities and government agencies as well as industry allies, including consultants, more...

Sponsored Content